

OCR A-Level Physics 3.3 Work, energy and power Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Define work done.

Define work done.

The product of the magnitude of the force and the distance moved by the object in the direction of the force. Unit: Joules (J).

Define Kinetic Energy and give its SI base unit.

Define Kinetic Energy and give its SI base unit.

The energy associated with the motion of an object with mass. The SI base unit is kg m² s⁻².

Define Gravitational Potential Energy.

Define Gravitational Potential Energy.

The energy of an object due to its position in a gravitational field.

Define Elastic Potential Energy.

Define Elastic Potential Energy.

The energy stored by an object as a result of a reversible change in its shape.

State the principle of conservation of energy.

State the principle of conservation of energy.

In a closed system, energy cannot be created or destroyed but only transferred from one form to another.

If we consider a closed system where an object is moving up and down, derive a formula for the velocity of an object in a gravitational field

If we consider a closed system where an object is moving up and down derive a formula for the velocity of an object in a gravitational field

All initial GPE is converted to KE as the object falls, and this KE is converted back to GPE as it rises.

Equating KE and GPE gives: mgh = $\frac{1}{2}$ mv²

Rearranging this in terms of v^2 gives $v^2 = 2gh$, so $v = \sqrt{2gh}$

Since there is no 'm' in the calculation, the mass has no effect on the final speed – the acceleration of free fall is the same for all objects.

The rate of work done is equal to...

The rate of work done is equal to...

Power.

What is efficiency?

What is efficiency?

efficiency (%) =

$\frac{useful \ output \ power}{total \ input \ power} \times 100$

